Thibli I

No.	13		Yielle,		(atibul, '		Hywhome $:$		Nilsump	
				Finturalia	Cifled	Fichili	(ald	Fiollid		1:414il
1	$N\left(\mathrm{C}_{2} \mathrm{H} \cdot\right)_{2}$	170-181 (1).35)	59	$\mathrm{C}_{21} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{1}$	137. . $\%$ \%	tis 901	8.ij	S.is	11.15	$11 . \mathrm{si}$
2	Pyrolidins,	146-160 (0).27)	B6. ${ }^{\text {a }}$	$\left(C_{1} H_{211} N_{0}\right)^{1}$	(13).90	(ix) 16	-.n4	S. 4	11.:1	11.11;
3	Piperiching	205-215 (0) , 35)	5) 6.2	(\% $\mathrm{mH}_{11} \mathrm{~N}_{4} \mathrm{O}_{3}$	tがirt	188	- 11	-.114	10.30	(1) M 1 l
4	Morphorins,	180-195 (0.83)	27.2	$\left({ }_{41} \mathrm{H}_{4} \mathrm{~N}_{2}\right)_{1}$	(19) (b)	15.72	-. 5.4	- \quad -	10.	(11) (10)

at reduced pressure. The fraction distilling at $160-171^{\circ}$ (0.40 mim) was collented; yield $12.3 \mathrm{~g}(71.6 \%)$. A disucomate derivative had mp 136.5°.

Anal. Calcd for $\mathrm{C}_{19}, \mathrm{H}_{47} \mathrm{~N}_{3} \mathrm{O}_{3}$: C, 66.12; II, $7.88 ; \mathrm{N}, 12.16$. Fonnd: C, $65.72 ; \mathrm{H}, 7.52 ; \mathrm{N}, 11.93$. Caled for $\mathrm{C}_{27} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{O}_{\mathrm{i}}$ (disnceinate): $\mathrm{N}, 7.23$. Fonnd: $\mathrm{F}, 7.12 .{ }^{7}$

The physical constants, yields, and amalyses of additional $3,4, \dot{j}$-trimethoxybenzylethylenedinmines, prepared in in minnel sinilar to that described above, are given in Table I.

O-Diethyl Phosphoryl Esters of Quaternary and Tertiary Aminophenols ${ }^{1}$

Salia Ginsbleke, Richimi J. Kitz, ani) Ihwin B. Whasen
Departments of Nivology and I nesthestology, Columbia Uniwesity, College of Physicians and Surgeons, Wew Fork. 32, Wem York

Rectated February 2- 1 I!NF

Tertiny esters of phosphoric acid which contalin a rather acidic afohol or phenol residue are inhibitors of acetylcholinestertase and other hydrolytic enzymes. Acetylcholinesterase in its reactions, with other types of emponnds reacts much more rapidly with componds containing a quaternary ammoninm or substitnted ammoninm function in the leaving group than it reats with similar eomponnds lacking this structure.

It would seem then that O-diethyl phosphoryl esters of aminophenols might be interesting componnds for this field of study. Althongh this principle is widely recognized, only a few conponnds of this type have been previonsly prepared, ${ }^{2-4}$ and we have therefore nudertaken the preparation of a number of new ones. The eomponnds are of the typer I, II, III, and some bisquaternary womponnds contaning a dimethylene ether bridge. - $\mathrm{CH}_{2} \mathrm{OCH} \mathrm{O}_{-}$, between the two ring uitrogens (see Table I).

III
The general promedure was to dienthyphosphorytate the animuphenol and then ta chaternize the amine with methyl p-tohenesulfonite. The product is not obtained with methyl iodide, and Andrews ${ }^{2}$ singested thint the resulting product might be the following betaine.

[^0]

Our results support this view. It is therefore necessary io avoid heating these componnds in the presence of a mexteophilic agent such ats I^{-}but it is safe to hent in the presence of anions such als pirrate and p-tohaemesilfomite.

Experimental Section

 Stibuzoles were prepared aceroding bi the method of Papa, at al. ${ }^{5}$ The $4,{ }^{\prime}{ }^{\prime}$ derivative, not previonsly prepared wis also , ibtilined by this methon: yield $74^{\circ} \%$ mpe25 25°.

The $4,4^{\prime}$-hydroxystiblazole wite reduced to the dihyrhostitbazole with sodimn amalginn at reflux temperatime for 6 hr in methanof containing ondinn methoxide mang the one-hilf amonnt: of NaHg ; yield 70\%.

4-(3-Byridylazo)phemen was prepared by eompling of-pyridinediazoninm chloride with phenol in iquewhe abahi. The prodnd. was precipitated by ientralization with arid; yield 81 go; rerrystallized from methanoh, 111 219 9°.
 Found: C, 65.87, H, 4.85, N, 20.58.

Diethyl Phosphorylation.- The procedure nsing diethyl phosphoryl chloride was shghty morlified after Andrews at at.* sodiun methoxide was uned inntad of sodinm ethoxide and the reaction mixture was not heated. After 1 hr aid rom temperature the reaction mindure was dihated with $\mathrm{H}_{2}{ }^{1}$) and the prodnet was extracted with ether'. After washing ($\mathrm{NiOH}, \mathrm{H}_{2}(\mathrm{O})$, he ether hayer was dried $\left.\left(N n_{n}\right)_{1}\right)$ in the presence of chareonl. The ether was evapurated and the crude product was sufficienty pure bo be nsed ior subecquent preparations withont distilhaton. Yiehs varied from 2.0 to 60%. Picrite were prepared ion identification.
Quaternization. .-The S-methyl driternily sults were prepared by heating the diethyl phosphate exter with oto e execon buethyl p-toheneulfonate in dinethyformanide (BMF) on : steini bath. The crusfe product was precipitated with ether. If the prodnct was relabively high melting, it was recrystanlized from acetome. Ii it was an oil, or dily it was trandormed int., the pierate by dissolving in hot water , methanol and adding hot agneons sodinn picrate. The picrates separated on cooliny. The pierates were recrestallized firm methinol. The yiedts

To check Andrewn hypothenis thite menhy iodide might siek the betaine, the diethyl phosphoryl ester of it-isoquinotinol was heated for 1 hr (11 in steam bath with exeess methyl iodidein DMAF. The sohntion wats rooled and a lenon-colored precipitate, mp 288°, insuhble in acetone, was obtained with ether. The componnd was very sohble in water and gave a negative iodide test with $\mathrm{A} \mathrm{N} \boldsymbol{N})_{3}$. The inalysis agrees with the betaine hychrate.

Anal. Culad for ($\left.1_{14} \mathrm{H}_{14} \mathrm{NO}_{4} \cdot \mathrm{H}_{2} \mathrm{t}\right):(\mathrm{C}, 50.52 ; \mathrm{H}, ~ 5.66 ; ~ N$, $4.91 ;$ P. 10.86. Fonnd: C, 50.1$) ;$ H, $6.13 ; \mathrm{N}, 4.93 ; \mathrm{P}, 10.91$.

Bisquaternary Compounds Containing an $\mathbf{N}, \mathbf{N}^{\prime}$-Dimethylene Ether Bridge.--Bis(chloromethyl) ether was transformed to the iodide with excess $\mathrm{Na}_{\mathrm{n}} \mathrm{I}$ in ancetone. NinCI was filtered off and the O-diethyl phosphorymated tertiary amine i_{11} acetone abhition was added. A dibute taqueons solution of sodinm picrate wate

[^1] ($1(1,51)$,

Table I ${ }^{a}$

				$\mathrm{Mp}_{\text {d }}{ }^{\circ}$	Solvent of				N						
No.	b	R	Y		recrystn	Formula	C	H	N	P	S	C	H	P	S

Diethyl Phosphoryl Esters of Quinolinols, Hydroxystilbazoles, 4,4'-Hydroxydihydrostilbazole, and 4-(3-Pyridylazo)phenol

1	3	\ldots	H	\ldots	159	EtO
2	3	\ldots	CH_{3}	\ldots	111^{e}	H 2 O
3	5	\ldots	H	\ldots	157	MeO

4	5	\ldots
5	6	\cdots
6	6	\ldots
7	7	\cdots
8	7	\cdots
9	8	\ldots
10	8	\cdots
11	$\hat{0}^{f}$	\cdots
12	5^{f}	\cdots
13	5^{f}	\cdots
14	4	2
15	4	2
16	4	3
17	4	3
18	4	4
19	4	4
20	4	4
21	4	4
22	4	4
23	4	4
24	3	4
25	3	4
26	3	4

EtOH
MeOH

CH_{3}	\cdots	157	MeOH
H	\cdots	117	$\mathrm{MeOH}-\mathrm{Et}_{2} \mathrm{O}$
H	\cdots	178	MeOH

$\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{~N}_{4} \mathrm{O}_{11} \mathrm{P}$	45.81	4.04	10.69	5.91	46.23	3.96	10.506	5.72
$\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{~N}_{4} \mathrm{O}_{11} \mathrm{P}$	$4 \tilde{0} .81$	4.04	10.69	5.91	46.00	3.83	10.54	5.87
$\mathrm{C}_{26} \mathrm{H}_{21} \mathrm{~N}_{4} \mathrm{O}_{11} \mathrm{P}$	$4 \hat{5} .81$	4.04	10.69	5.91	46.27	3.95	10.70	6.01
$\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{~N}_{4} \mathrm{O}_{11} \mathrm{P}$	45.81	4.04	10.69	5.91	45.86	4.43	10.68	5.96

$\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{NO}_{7} \mathrm{PS}$	53.95	5.61	3.00	6.63	6.86	53.79	5.37	2.97	6.34	6.47
$\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{~N}_{4} \mathrm{O}_{11} \mathrm{P}$	50.01	4.37	9.72	5.37		49.95	4.04	9.88	5.38	
$\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}_{11} \mathrm{P}$	50.01	4.37	9.72	5.37		50.05	3.86	9.66	5.44	

| H | $\mathrm{CH}=\mathrm{CH}$ | 163 | MeOH | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathrm{CH}_{3} \mathrm{C}_{25} \mathrm{~N}_{4} \mathrm{O}_{11} \mathrm{P}$ | 50.01 | 4.37 | 9.72 | 5.37 | 50.05 | 3.86 | 9.66 | 5.44 | | |
| H | $\mathrm{CH}=\mathrm{CH}$ | 127 | MeOH | | | | | | | |
| $\mathrm{CH}=\mathrm{CH}$ | 141 | MeOH | | | | | | | | |

$\begin{array}{llll}\mathrm{H} & \mathrm{CH}=\mathrm{CH} & 141 & \mathrm{MeOH} \\ \mathrm{CH}=\mathrm{CH} & 121^{g} & \mathrm{Me} 2 \mathrm{CO}-\mathrm{EtaO}_{2}\end{array}$
$\mathrm{CH}_{3} \quad \mathrm{CH}=\mathrm{CH} \quad 152 \quad \mathrm{MeOH}$

| CH_{3} | $\mathrm{CH}=\mathrm{CH}$ | 168 | Me 2 CO | $\mathrm{C}_{26} \mathrm{H}_{36} \mathrm{NO}_{7} \mathrm{PS}$ | 57.79 | 5.82 | 2.70 | 5.96 | 6.17 | 57.75 | 5.76 | 2.90 | 5.80 | 6.06 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$\begin{array}{llrl}\mathrm{CH}_{3} & \mathrm{CH}_{2} \mathrm{CH}_{2} & 103 & \mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O} \\ \mathrm{CH}_{2} \mathrm{CH}_{2} & 77 & \mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}\end{array}$
$\mathrm{C}_{24} \mathrm{H}_{2 \mathrm{i}} \mathrm{N}_{4} \mathrm{O}$

57.79	5.82	2.70	5.96	6.17
49.83	4.71	9.69	5.36	

Bisquaternary Compounds Containing the $\mathrm{Bridge}^{\mathrm{CH}_{2} \mathrm{OCH}_{2} \text { between the Two Ring Nitrogen Atoms }}$

${ }^{a}$ The formula weight of all compounds except those coilaining $\mathrm{CH}=\mathrm{CH}$ and $\mathrm{N}=\mathrm{N}$, which were not tested, was correct to 1.5% by the picrate method. ${ }^{b}$ This number refers to the quinoline or pyridine rings. ${ }^{c}$ This number refers to the benzene ring. ${ }^{d}$ Melting points were taken on a Uni-Melt apparatus. ${ }^{6}$ Previously reported; ${ }^{2}$ softens at $108-110^{\circ}$, melts at $135-137^{\circ}$. ${ }^{f}$ Isoquinolinol. ${ }^{a} p$ Toluenesulfonate.
added a few minutes later, and nuch of the solvent was evaporated at room temperature. The crude picrate was obtained by cooling and was recrystallized from methanol.

Analysis for Picrate.-All the picrates except those containing the chromophores $\mathrm{CH}=\mathrm{CH}$ and $\mathrm{N}=\mathrm{N}$ were analyzed by measuring the optical density at $415 \mathrm{~m} \mu$ of a solution at abont $2 \times 10^{-5} \mathrm{M}$ in 10% ethanol. The method was standardized with picric acid and a few drops of dilute alkali. All compounds were correct with $\pm 1.5 \%$ which is about the accuracy of the method. The identity of the unquaternized esters in those compounds containing a chromophore rests upon the correct analyses of the quaternized derivatives.

6,12-Diphenyldibenzo $[b, f][1,5]$ diazocines

W. Metlesics, T. Resmick, G. Silverman, R. Tavares, and L. H. Sternbach
Department of Chemical Research, Research Division, Hoffmann-La Roche Inc., Nutley, New Jersey
Received April 9, 1964
Revised Manuscript Received January 27, 1966

Since 2,8 -dichloro-6,12-diphenyldibenzo $[b, f][1,5]$ diazocine was shown to have hormonelike activity, ${ }^{1}$ a number of analogs were

[^2]prepared. In two cases ${ }^{2,3} 6,12$-diphenyldibenzodiazocines were formed by heating the corresponding 2 -aminobenzophenone hydrochlorides. We have found that dibenzodiazocines can be prepared conveniently and in good yields from 2-aminobenzophenones when Lewis acids are used as condensing agents.

Experimental Section

All melting points are corrected. Ultraviolet spectra were determined in isopropyl alcohol using a Cary 14 spectrophotometer.

General Procedure.-The corresponding 2-aminobenzophenone was dissolved in an inert solvent, the catalyst was added, and the solition was heated under reflux for the time indicated. After cooling, the solution was washed with aqueous sodium hydroxide, and the solvent was removed in vacuo. In each case the crystalline reaction product was recrystallized from a mixture of methylene chloride and alcohol to give pale yellow prisms.

Acknowiedgement.-We are indebted to Dr. V. Toome and Mr. S. Traiman for the spectrophotometric determinations and to Dr. Al Steyermark and his staff for the microanalyses.

[^3]
[^0]: (1) This work supported by the Division of Research Grants and Fellowships of the National Institutes of Health, Grant NB005T3-18 and Program Project Grant GMO9069-04: by the U. S. Public Healtı Service and Researclı Career Awarl GM-N3-15, O12; aut by National Science Foundation Grant Gl; 281\%.
 (2) K. J. M. Andrews, F. R. Athertmin, F. Jersel, and A. L. Morrism, J. Chem. suc. 1638 (190) .
 (3) 1 . Hobbiger, Brit. ./. Iharmarol. 9, 1.) 9 (1954).

[^1]:

[^2]: (1) Pharmacological data on some of the compounds described will be published at a later date: see also G. W. Duncan, S. C. Lyster, and J. B. Wright. Proc. Soc. Exptl. Biol. Med, 120, 725 (1965).

[^3]: (2) A. Sondheimer, Chem. Ber., 29, 1272 (1896).
 (3) A. Giacalone, Gazz. Chim. Ital., 65, 120 (1935): Chem. Abstr., 29, 5450^{9} (1935).
 (4) Variations of the condensing agents and solvents gave different yields of the respective product. One representative example for the preparation of each compound is shown in Table I on the following page.

